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For hard ellipsoids of revolution we calculate the phase diagram for the idealized glass transition. Our
equations cover the glass physics in the full phase space, for all packing fractions and all aspect ratiosX0. With
increasing aspect ratio we find the idealized glass transition to become primarily driven by orientational
degrees of freedom. For needlelike or platelike systems the transition is strongly influenced by a precursor of
a nematic instability. We obtain three types of glass transition line. The first one (fc

(B)) corresponds to the
conventional glass transition for spherical particles which is driven by the cage effect. At the second one

(fc
(B8)), which occurs for rather nonspherical particles, a glass phase is formed that consists of domains.

Within each domain there is a nematic order where the center of mass motion is quasiergodic, whereas the
interdomain orientations build an orientational glass. The third glass transition line (fc

(A)) occurs for nearly
spherical ellipsoids where the orientational degrees of freedom with odd parity, e.g., 180° flips, freeze inde-
pendently from the positions.

PACS number~s!: 64.70.Pf, 61.20.Gy, 61.30.Cz, 61.25.Em
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I. INTRODUCTION

The dynamics of a molecular system that is supercoo
toward the glass transition shows a variety of phenom
related to the nontrivial interplay between orientational a
translational degrees of freedom caused, e.g., by steric
drance. In thermodynamic equilibrium molecular systems
ready show, compared to simple liquids, a variety of diff
ent physical behavior. At low enough densities~or high
enough temperatures! they form an isotropic liquid. On in-
creasing the density they can undergo a transition into a c
tal or several different liquid crystalline phases~like, e.g., a
nematic phase!. A crucial part of the interaction that cause
these phenomena is given by the shape of the molecu
Therefore one may also expect different characteristic
tures for the glass transition in such systems.

A model system that allows one to study the translati
orientation interplay is a system ofN hard ellipsoids of revo-
lution in a box of volumeV. The fluid of ellipsoids is char-
acterized by two parameters: the aspect ratioX05b/a
relatingb anda, the major and minor axes of the ellipsoid
and the packing fractionf, which is related to the numbe
densityr5N/V by f5pX0r/6.

In this work we start from a theory of liquids. We dem
onstrate that asingle set of equations allows us to describ
the glassy behavior for almost spherical particles up to la
PRE 621063-651X/2000/62~4!/5173~6!/$15.00
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aspect ratios where prenematic order becomes crucial.
choice of the model system has also been motivated by
successful application of the ideal mode-coupling the
~MCT! for simple liquids@1#, particularly to neutral colloidal
suspensions. MCT gives a closed set of equations for
intermediate scattering functionS(q,t). Comparison between
experimental@2# and MCT results@1,3# has shown good
agreement for colloidal systems which usually are mode
by hard spheres. Further tests of the MCT for other system
can be found in, e.g., Refs.@4–6#. MCT in its original form
describes an idealized glass transition which is indicated
breaking of ergodicity at a critical densityrc ~or critical
temperatureTc). The corresponding nonergodicity parame
f (q)5 limt→`S(q,t)/S(q,0) becomes nonzero atrc ~or Tc).
Recently, the mode coupling equations have been exten
to molecular systems. The dynamics of liquids of rigid mo
ecules composed ofM atoms can be described by either sit
site correlatorsSa,b (a,b51,2, . . . ,M ) or molecular corre-
lation functionsSlmn,l 8m8n8(q,t), where for the latter one
decomposes the degrees of freedom into the center of m
and orientational components~see, e.g.,@7,8#!. The density
r(x,V,t) is a function of the center of mass coordinatex and
the orientationV5(F,u,x), which is specified by the three
Euler angles. Expandingr(x,V,t) with respect to a produc
basis of plane waveseiq•x and generalized spherical harmo
ics Dmn

l (V) one arrives at the tensorial densityr lmn(q,t). l
5173 ©2000 The American Physical Society
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5174 PRE 62M. LETZ, R. SCHILLING, AND A. LATZ
runs over all positive integers including zero andm and n
take integer values between2 l and l. Then the molecular
correlators are defined as follows:

Slmn,l 8m8n8~q,t !5
1

N
^r lmn* ~q,t !r l 8m8n8~q,0!&. ~1!

The extension of MCT to molecular systems has been d
for the molecular representation for a single dumbbell in
simple, isotropic liquid@9#, for molecular liquids of linear
molecules@10#, and for arbitrarily shaped molecules by u
of nonlinear fluctuating hydrodynamics@11# and by the
Mori-Zwanzig projection formalism@12#. A MCT approach
using a site-site description has recently been worked
@13#. Because a hard ellipsoid corresponds to a rigid bo
with infinitely many constituents, it is the molecular repr
sentation that is the only appropriate one. Since we cons
ellipsoidsof revolutionthe third Euler anglex becomes re-
dundant. This means that we have to considerSlm0,l 8m80(q;t)
only. Using theq frame @8#, i.e., one choosesq5(0,0,q)
[q0 whereq5uqu, these correlators become real and diag
nal in m andm8 @10#:

Slm0,l 8m80~q,t !5dm,m8Sll 8~q,m,t !. ~2!

The head-tail symmetry of the ellipsoids implies that the
correlators vanish forl 1 l 8 odd. For givenX0 the critical
packing fractionfc(X0) can be determined by calculatin
the ~unnormalized! nonergodicity parametersFll 8(q,m)
5 limt→` Sll 8(q,m;t).

II. MOLECULAR MODE-COUPLING EQUATIONS

Using the densitiesr lm(q,t) and longitudinal translationa
currentsj lm

T (q,t) and rotational currentsj lm
R (q,t) as the slow

variable set for the Mori-Zwanzig projection operator tec
nique, the molecular MCT equations have been derived
can be found in Refs.@10# and @12#. The time dependen
molecular MCT equations can be represented as follows

]

]t
S~q,m,t !5NR~q,m,t !1NT~q,m,t !,

]

]t
Na~q,m,t !52Va

2~q,m!S~q,m,t !

2(
a8

naa8~q,m!Na8~q,m,t !

2Va
2~q,m!(

a8
E

0

t

ma,a8~q,m,t2t8!

3Na8~q,m,t !dt8 ~3!

and
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ml ,l 8
a,a8~q,m,t !5 (

q1 ,q2
q5uq11q2u

(
m1

(
l 1 ,l 2

l 18 ,l 28

V l ,l 1 ,l 2

l 8,l 18 ,l 28

m,m1 ,a,a8
~q,q1 ,q2!

3Sl 1 ,l
18
~q1 ,m1 ,t !Sl 2 ,l

28
~q2 ,m2 ,t !. ~4!

The indicesa,a8P$T,R% refer to either translational or ori
entational currents.Na(q,m,t) are the current-density corre
lation functions for translational (a5T) and rotational (a
5R) currents multiplied byq and Al ( l 11), respectively.
The microscopic frequency matrix is denoted byVa(q,m)
and is determined by the static molecular correlators. In
absence of memory effects (ma,a850) the equations are jus
a set of coupled harmonic oscillators with frictionnaa8 for
vibrational (a5T) and rotational (a5R) oscillations. For
example, the translational mode withl 5 l 850 is the propa-
gating phonon mode and the modes withl 5 l 8.0 that ex-
hibit a frequency gap atq50 arelocalizedoscillators.

For ma,a8Þ0 nonlinearities occur. Their physical origi
is the memory effect. The corresponding memory kernel
correlation function of fluctuating forces. Since fluctuatin
forces can decay into apair of density excitations, this kerne
is approximated as a sum of all possiblebilinear products of
density correlation functions. Such a nonlinear feedba
mechanism can cause an ideal glass transition with nontr
dynamics. The glass transition for Eqs.~3! and ~4! is inves-
tigated in the following part of the paper. The explicit e
pressions for the verticesVaa8 for arbitraryq can be found in
Ref. @10# and for theq frame in Ref.@12#. The verticesVaa8

depend only on the static correlatorsSll 8(q,m) and the direct
correlation functioncll 8(q,m), which are related to each
other by the Ornstein-Zernike equation. We have determi
cll 8(q,m) within the Percus-Yevick approximation.

It has been shown that the liquid phase of hard ellipso
is well described by these approximations@14#. Although
Percus-Yevick theory fails to describe crystallization
yields a nematic instability@14# that is in reasonable agree
ment with Monte Carlo simulations@15# even if Percus-
Yevick theory still underestimates the tendency toward o
entational order. This nematic instability will play a
important role in the following. For the solution of th
Percus-Yevick~PY! equations we have chosen a cutoffl co
54 for l and l 8, whereas the MCT equations were truncat
at l co52. We are confident that even such a small numbe
molecular correlators enables us to capture the correct p
ics of the transition.

III. SOLUTION OF THE MOLECULAR MCT
FOR HARD ELLIPSOIDS

The numerical solution of Eqs.~3! and~4! for t→` yields
the nonergodicity parametersFll 8(q,m)5F(q,m). In the
limit of t→` the following set of nonlinear equations fo
F(q,m) has to be solved in an iterative way:

(
aa8

ql
a~q!ql 8

a8~q!@F~q,m!21#aa8S21~q,m!F~q,m!

1F~q,m!2S~q,m!50, ~5!
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F l ,l 8
a,a8~q,m!5 (

q1 ,q2
q5uq11q2u

(
m1

(
l 1 ,l 2

l 18 ,l 28

V l ,l 1 ,l 2

l 8,l 18 ,l 28

m,m1 ,a,a8
~q,q1 ,q2!

3Fl 1 ,l
18
~q1 ,m1!Fl 2 ,l

28
~q2 ,m2!, ~6!

with

FIG. 1. Phase diagram for the ideal glass transition. The h
zontal axis showsX0 scaled with (X0

221)/(X0
211). The type-B

glass transition linesfc
B(X0) andfc

B8(X0) ~see text! are depicted as
thick solid and dashed lines, respectively. The thin solid line is
fc

(A)(X0) glass transition line. The nematic instability occurs
fnem(X0) and is shown as thin dashed-dotted lines. The inset sh
the situation aroundX052.5 where thefc

B(X0) glass transition line

merges into thefc
B8(X0) transition line. Forx0>2.5 thefc

B8(x0)
transition is the physical one~thick dashed line! whereas forx0

<2.4 it is an unphysical solution~thin dashed line!.

FIG. 2. The static structure factorSll 8(q,m) is plotted together
with the nonergodicity parameterFll 8(q,m) for X051.3 and f
50.549~directly above the nonergodicity transition!. ~a! shows the
center of mass correlatorl 5 l 85m50 whereas~b! shows the qua-
drupolar correlatorl 5 l 852,m50.
ql
a~q!5H q for a5T

Al ~ l 11! for a5R.
~7!

By

F~q,m!5 lim
z→0

2zma,a8~q,m,z!5 lim
t→`

ma,a8~q,m,t !

we denote the long time limit of the memory kernel. From
solution of these equations we obtain the phase diagram
ideal glass transitions that is shown in Fig. 1. This figure a
contains two dashed-dotted linesFnem(X0) indicating the
location of the nematic instability as it arises in thermod

i-

e
t

s

FIG. 3. A similar plot as Fig. 2 is shown but forX052.3 and
f50.617~again directly above the nonergodicity transition!, which
is already close to the nematic instability.

FIG. 4. At the glass transition the correlation length for para
orientation obtained from the half width at half maximum of th
peak of S22(q,0) is plotted as a function of the aspect ratio. F
X0<2.4 the glass transition is of typeB whereas forX0>2.5 it is of
type B8 ~see text!.
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FIG. 5. For X052.5 and f
50.593, the smallest aspect rat
where the type-B8 transition oc-
curs, theq dependence of the non
ergodicity parameterFll 8

8 (q,m) is
plotted together with the static
structure factor Sll 8(q,m) and
the normalized nonergodicity
parameter f l l 8

8 (q,m)5Fll 8
8 (q,m)/

Sll 8(q,m). In ~a! this is done for
l 5 l 852 and m50 whereas~b!
shows the same quantities for th
center of massl 5 l 85m50.
or
d

-
de
ns

tes
ition
si-

the

tor

tic
tor
ers
k-
namic equilibrium from PY theory@14#. These two lines are
in agreement with density functional theory@16# and Monte
Carlo simulations@15#. In addition there arethreeglass tran-
sition lines each forX0,1 andX0.1. First of all we will
discuss the critical linefc

(B)(X0) ~thick solid line! at which
both translational and orientational degrees of freedom fl
and l 8 even undergo a discontinuous ergodic to nonergo
transition~also called the type-B transition!. The existence of
fc

(B)(X0) has been established for 0.35,X0,2.5. In the re-
gion where thefc

(B)(X0) glass transition occurs the equilib
rium system shows crystallization. Since this is a first or
phase transition the onset of crystallization gives two de
ties ~e.g., from Monte Carlo simulations@15#! resulting from
ic

r
i-

a Maxwell construction. Thefc
(B)(X0) glass transition line is

well bracketed between these two densities. This indica
that the mode-coupling equations describe a glass trans
in the metastable region of a supercooled liquid. The phy
cal origin of the glass transition depends strongly on
location of fc

(B)(X0). For aspect ratiosX0 close to 1 the
transition is dominated by the center of mass correla
S00(q,0).

To illustrate this point we have plotted in Fig. 2 the sta
center of mass correlator and the ‘‘quadrupolar’’ correla
S22(q,0) and their corresponding nonergodicity paramet
for X051.3. This was done directly above the critical pac
ing fraction fc50.549. The first peak atqmax5q'6.6a21
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of S00(q,0) dominates the transition; this is the manifestat
of the cage effect. Stronger deviations of the ellipsoids fr
spherical symmetry, however, alter this behavior. This
demonstrated in Fig. 3, where we have plotted the same
relators as in Fig. 2 but for an aspect ratio ofX052.3. Now
the peak atq'0 of the quadrupolar correlatorS22

0 (q,0)
~which is for q50 the Kerr constant for nonpolar fluids!
dominates the breaking of ergodicity. The half widthDq ~at
half maximum! of this peak defines a correlation lengthj
52p/Dq. In Fig. 4 we have plottedj at the glass transition

line ~eitherfc
(B) or fc

(B8)) as a function of the aspect ratioX0

for prolate ellipsoids.
Within the glassy phase, i.e., forf.fc

(B)(X0), a continu-
ous~also called type-A) glass transition occurs at the critic
lines fc

(A)(X0) ~thin solid lines in Fig. 1! at which the self
part of the correlators withl and l 8 odd freezes. This type-A
transition can only occur if the corresponding vertexV is
large enough. For this to happen the aspect ratio sho
clearly be different from 1. The reader should note that fo
points ~open circles in Fig. 1! were determined exactly an
the thin solid lines are schematic, showing thatfc

(A)(X0) has
to increase ifX0 is changed toward 1, in order to keep th
vertices large enough. The physical interpretation is tha
fc

(A)(X0) the 180° jumps of the ellipsoids become froze
This resembles the formation of orientational glasses. O
possible candidate for such a transition might be plastic c
tals like the carboranes@17# although presently only type-B
transitions are known.

Probably the most interesting result is the third critic

line fc
(B8)(X0) ~dashed line! which is shown schematically in

Fig. 1 for X0.2.0 ~prolate ellipsoids! and X0,0.5 ~oblate
ellipsoids!. In this region the glass transition lines are clo

to the nematic instability line. The existence offc
(B8)(X0) is

based on our following observations. On increasingf for
2.1,X0,2.5 we find a glass transition atfc

(B)(X0) where all
Fll 8(q,m) become nonzero. On increasingf further we find
in addition a second solutionFll 8

8 (q,m) for f>fc
(B)(X0).

This solution has the feature thatFll 8
8 (q,m) is essentially

zero with the exception of a well pronounced peak

FIG. 6. The formation of thefc
(B8) glass transition is illustrated

Within each domain of diameterj the system shows liquid crysta
line order whereas forl @j there are randomly frozen orientation
correlations.
n

s
r-

ld
r

at
.
e

s-

l

r

F228 (q,m) at q50 and with a width of orderj. We have
shown this in Fig. 5~a!, where we have plottedF228 (q,0) at

thefc
(B8) transition forX052.5. This is plotted together with

the static correlatorS22(q,0) and the normalized function
f 228 (q,0)5F228 (q,0)/S22(q,0). In Fig. 5~b! we have plotted
the same quantities forl 5 l 850; the center of mass cor
relator. f 008 (q,0) does not exceed 0.15 although the orien
tions are frozen. This means that the system is ‘‘quas
godic’’ in the sense that for length scalesl !j the ellipsoids
show a~nematic! orientational order and the center of ma
behaves quasiergodically, decaying to a very small va
For length scalesl @j, however, the orientations as well a
the positions have nondecaying, long-time correlations
are frozen. The easiest way to think of such a system is
to the formation of liquid crystalline~nematic! domains with
a size of the order ofj. This is visualized in Fig. 6. Figure 4
shows that the domains can be quite large. ForX052.5 ~the
aspect ratio where the type-B8 transition occurs first and
where therefore the type-B8 transition with the smallest do
main size shows up! we obtain from our calculation a do
main size withj'30. Within the domains the center of ma
is quasiergodic, i.e., liquidlike, whereas the orientations
frozen with a nematic order. In our idealized MCT an elli
soid cannot move from one domain to the other.

In connection with this it is also interesting to mentio
that two types of type-B transition were also found for the
center of mass correlator of asimple liquid of hard spheres
with an attractive interaction given by either the Baxt
model @18# or a Yukawa potential@19#. The existence of
these two solutions forX0.2.1 reflects the competition be
tween the frozen positional disorder due to the cage ef
and the tendency to form a nematic phase. SinceFll8 (q,m)
,Fll (q,m) for 2.1,X0,2.5, the second solution is un

physical @20#. However, for X0>2.5 and fc
(B8)(X0)<f

<fnem(X0) we find only one solution, which has all th
features ofFll 8

8 (q,m) described above. We stress that t

existence of the critical linefc
(B8)(X0) depends on our

choice of slow variables, which include the nematic ord
parameter, and therefore accounts for the occurrence o

weakly first order nematic transition. Sincefc
(B8)(X0) is

rather close tofnem(X0) quasicritical fluctuations appea
which also slow down the entropy fluctuations. We do n
think that these will qualitatively change the phase diagra
On the other hand, the concept of a glass transition indu
by the vicinity of a second order phase transition has alre
been introduced by a MCT approach@21# in order to de-
scribe the experimentally observed central peak phenome
close to a ferroelectric instability.

IV. CONCLUSION

In conclusion, we have shown that hard ellipsoids exh
a rather intriguing phase diagram obtained from the ideali
mode-coupling theory for molecular systems, where the
entational degrees of freedom and their coupling to tran
tional ones are incorporated. In particular, we predict a gl
transition for X0.2 that is driven by a precursor of
nematic phase. Ellipsoids show two type-B glass transition

lines (fc
(B) andfc

(B8)). One,fc
(B) , is dominated by the cage

effect whereas the other one,fc
(B8) , is caused by an orienta



en
ps
b

s

on
c-
gs-

5178 PRE 62M. LETZ, R. SCHILLING, AND A. LATZ
tional ~nematic! instability. Besides this a type-A glass tran-
sition occurs for almost spherical ellipsoids where the ori
tational degrees of freedom with odd parity, e.g., 180° fli
freeze independently of the translational ones. It would
very interesting to check these predictions by experiment
simulations.
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